1.
If the bearing of A from B is 240^{o}, find the bearing of B from A
040^{o}
060^{o}
120^{o}
300^{o}
2.
A bag contains 5 red and 7 black balls of the same size. What is the probability of picking a black ball?
3.
Solve: 5x - (7x - 3) ≤ 9.
x ≥ -3
x ≤ -3
x ≥ -6
x ≤ 3
4.
Solve:
4
0
5.
A man travelled a distance of 8 km in an hour. How long will it take him to cover a distance of 12 km, travelling at the same speed?
1⅓ hrs
1½ hrs
1¾ hrs
2 hrs
6.
In the Venn diagram M and N are the subsets of the universal set U.
Use this information to answer the question below.
How many members are in the set N?
2
3
4
6
7.
Factorize: 3ax + 6a - x - 2
(3a+1)(x+2)
(3a+1)(x-2)
3a(x-2)
(3a-1)(x+2)
8.
Divide 0.5445 by 0.09.
5.05
6.05
6.50
60.50
9.
Make h the subject of the relation V = πr^{2}h.
10.
Express 134.78 correct to the nearest tenth
130.0
134.7
134.8
135.0
11.
Which of the following is arranged in ascending order?
-25, -64, 4, 17
-64, -25, 4, 17
-64, -25, 17, 4
17, 4, -25, -64
12.
A trader sold a radio set for GH₵ 72.00 making a profit of 8%. Find, correct to the nearest Ghana cedi, the cost of the radio set.
GH₵ 66.00
GH₵ 67.00
GH₵ 77.00
GH₵ 78.00
13.
Subtract (7x-3) from (5-3x).
10x-8
4x-8
8-10x
2-10x
14.
The cost of 12 note books is GH₵ 54.84. Find the cost of one note book.
GH₵ 5.57
GH₵ 4.67
GH₵ 4.57
GH₵ 3.57
15.
Ama bought a pair of sandals for GH₵ 20.00 and solid it at GH₵ 24.00. Find the percentage profit.
4 %
17 %
20 %
44 %
16.
Evaluate
17.
What is the rule for the mapping?
x→ 3x^{2}-1
x→ 5x^{2}-3
x→ x^{2}+1
x→ 4x-2
18.
The simple interest on GH₵ 450.00 for 4 years is GH₵ 45.00, find the rate of interest
2.5 %
10 %
25 %
6.5 %
19.
Correct 0.024561 to three significant figures.
0.03
0.025
0.0245
0.0246
20.
Arrange
,
and
in ascending order.
,
,
,
,
,
,
,
,
21.
Which property of arithmetic is used in a(x+y) = ax + ay.
Associative
Commutative
Distributive
Initiative
22.
Two sides of a rectangle are 10 cm and 6 cm. Calculate the area of a square with the same perimeter as that of the rectangle.
16 cm^{2}
30 cm^{2}
60 cm^{2}
64 cm^{2}
23.
Which of the following is an infinite set?
{1, 2, ..., 5, 6, 7}
{4, 6, 8, 10, 12}
{2, 3, 5, 7, 11, ...}
{3, 6, ..., 18, 21, ...33, 36}
24.
Find the rule of the mapping
y = 2x + 2
y = -2x + 2
y = 4x
y = -2x + 5
25.
Find the gradient of the straight line which passes through the points (-3,4) and (3,-2).
2
1
-2
-1
26.
Find the image of the point (-2,3) under a reflection in the y-axis.
(2,-3)
(-3,2)
(2,3)
(3,2)
27.
Find the median of the following numbers: 46, 68, 34, 37, 76 and 81.
35.5
57
67
68
28.
-9
-3
1
15
29.
Find the least number that can be added to 207 to make the sum divisible by 17.
3
13
14
30
30.
Evaluate: (0.07 x 0.02) ÷ 14.
0.01
0.001
0.0001
0.00001
31.
A car covered a distance of 150 km at a speed of 18 km/h. Find the time taken.
7 hours 33 minutes
7 hours 53 minutes
8 hours 13 minutes
8 hours 20 minutes
32.
In the diagram, line MN is parallel to line TU, line TS cuts line MN at O and ∠MOS = 115^{o}. Find ∠OTU.
65^{o}
55^{o}
45^{o}
25^{o}
33.
Which of the following inequalities is represented on the number line?
-2>y>2
-2≤ y < 2
-2 ≥ y > 2
-2 < y ≤ 2
34.
A football match starts at 2.20 p.m. and lasts for 1 hour 50 minutes. At what time will the game end?
3.10 p.m.
4.10 p.m.
5.10 p.m.
6.10 p.m.
35.
On a map, 1⁄3 cm represents 5km. If two towns A and B are 18 cm apart on the map, what is the actual distance between them?
27 km
30 km
240 km
270 km
36.
If P = {x:x is an even number greater than two and less or equal to twelve}, list the members of P
{2, 4, 2, 8, 10, 12}
{3,4,6,8,10,12}
{2, 4, 6, 8, 10}
{4, 6, 8, 10, 12}
37.
In the diagram, line AB is parallel to line PD. Find the value of x.
20^{o}
80^{o}
100^{o}
120^{o}
38.
Which of the following numbers is the largest?
-70
-50
-3
-2
39.
Given that x = 4, y = 7, evaluate 2xy + 3(x+y)
79
89
99
109
40.
Express 0.725 as a fraction in its lowest term.
The marks obtained by students in a class test were
4 |
8 |
7 |
6 |
7 |
2 |
1 |
7 |
4 |
7 |
3 |
7 |
6 |
4 |
3 |
7 |
5 |
2 |
7 |
2 |
5 |
4 |
8 |
3 |
2 |
a
Construct a frequency distribution table for the data.
b
Find the:
i)
mode of the distribution
ii)
median mark of the test;
iii)
mean mark.
a
Simplify
, leaving the answer in standard form.
b
i)
Make r the subject of the relation
ii)
From (b)(i), find the value of r when y = 3 and x = 10.
c
Juliet bought 1,756 kg of frozen chicken, 675 g of vegetables and 95 g of corn oil from a Shopping Mall. What is the total weight of the items she bought in kilogram?
a
An English textbook costs GH₵ 25.00. The author of the book agreed to take 20% of the cost of each book sold. If 1,702 copies were sold, calculate the author's share.
b
Simplify:
c
In the diagram, MN = 13 cm, MP = 15 cm, MS = 12 cm and MS is perpendicular to NP.
Calculate length NP.
a
x |
1 |
2 |
3 |
4 |
5 |
↓ |
↓ |
↓ |
↓ |
↓ |
↓ |
y |
0 |
3 |
6 |
9 |
12 |
The mapping shows the relationship between x and y.
i)
using a scale of 2 cm to 1 unit on the x-axis and 2 cm to 2 units on the y-axis, draw two perpendicular axes 0x and 0y on a graph sheet for 1 ≤ x ≤ 5 and 0 ≤ x ≤ 14;
ii)
plot the point for each ordered pair, (x, y).
iii)
join the points with a straight line;
iv)
using the graph, find the gradient of the line in (a)(iii);
v)
use the graph to find the equation of the line in (a)(iii).
b
Simplify: 32 x 8 x 4 x 2, leaving the answer in the form 2^{n}
a
In an examination 60 candidates passed Integrated Science or Mathematics. If 15 passed both subjects and 9 more passed Mathematics than Integrated Science, find the:
i) number of candidates who passed in each subject;
ii) probability that a candidate passed exactly one subject.
b
Factorize: xy + 6x + 3y + 18
a)
Simplify: 5(6 - ab) + 2(-7 + 3ab)
b)
The equation of a straight line is given by 3x - 2y - 6 = 0. Find the:
(i) gradient of the line;
(ii) y-intercept
c)
Adwoa received a commission of 20% on bread she sold. In one week, Adwoa's commission was GH₵ 540.00.
(i) How much bread did she sell during that week?
(ii) Find her average daily commission.