1.
Simplify: 3 log x + log y - 2 log z.
log (x3yz2)
log ()
log ()
log ()
2.
If log x = 2 - 3log 2, find the value of x.
3.
Given that 6log(x + 4) = log64, find the value of x.
4
2
-2
-4
4.
If log10 2 = m and log10 3 = n, find log10 24 in terms of m and n.
3m + n
m + 3n
4mn
3mn
5.
Express 1 + 2 log103 in the form log10q
log106
log109
log1019
log1090
6.
log3 9 - log2 8 |
log3 9 |
-
-
7.
Simplify: log106-3log103+log1027.
2log103
log103
log102
3log102
8.
If logx2 = 0.3, evaluate logx8.
0.6
0.9
1.2
2.4
9.
If log x = 0.3030, log y = 0.4777 and log Z = 0.8451; evaluate:
1.4313
0.8466
0.5466
0.0149
10.
If log102 = 0.3010 and log102y = 1.8060, find, correct to the nearest whole number, the value of y.
7
6
5
4